

Review Paper:

Biochar based dye removal from industrial effluents: A review

Sharma Rajni^{1*}, Mathur Dipti¹, Shrivastava Kriti² and Soni Swaroop³

1. Department of Chemistry, S.S. Jain Subodh P.G. College, Jaipur, INDIA

2. Center of Renewable Energy and Storage, Suresh Gyan Vihar University Jaipur, INDIA

3. Amity University Rajasthan, Jaipur, 303002, INDIA

*rajni.ajmer@gmail.com

Abstract

During recent years, numerous investigations have been carried out to explore the potential of biochar to remove organic and inorganic pollutants from wastewater. In the field of dye adsorption, activated carbon is the most widely used adsorbent, but its activation and regeneration costs are high. Several alternative adsorbents are being investigated to remove dyes from aqueous media. Bio chars are a class of alternative adsorbents, which are normally produced by pyrolysis of agricultural wastes, wood, or other biomasses in oxygen-limited conditions.

Bio char is a carbon rich material produced from waste biomass by thermochemical conversion methods. It is used as a bio sorbent in removal process of various pollutants and its efficiency is strongly influenced by the characteristics of the biomass feed stock and method of production. This review aims to understand the sorption behaviour of dyes on to bio char-based bio sorbent. The mechanism describing bio sorption behaviour of biochar and the factors influencing the bio sorption behaviour process have been broadly reviewed in this study. The bio sorption model can also be used to comprehend the potential of the bio char as bio sorbent for dye removal.

Keywords: Biochar, adsorbents, sorption, pollutant, dye, biomass, pyrolysis.

Introduction

The impact of organic and inorganic pollutants on human health and the environment has become a global threat⁴⁴. Exposure to organic and inorganic pollutants in the environment can cause serious damage to the air, pollution of water bodies, death of grass and trees, infestation of food diseases by insects, adverse effects on animals, plants and human health. These contaminants are carcinogenic, toxic and mutagenic and their presence in the ecosystem can cause loss of ecosystem quality¹⁰.

Most of these pollutants come from domestic and commercial activities. Since all living things on earth depend on the earth's air and water resources so when these resources are polluted, the survival of all living things is directly affected. Almost two third of the earth's surface is

covered with water and population growth directly leads to increased water pollution resulting from human activities^{3,4}.

Water is valuable for future generations and must be protected. Today, water quality is an issue of great concern³⁸. Due to increasing pollution and depletion of natural resources, domestic activities have a direct and indirect impact on water quality, which affects the environment and quality of life. The textile industry produces a lot of water pollution due to excessive use of water during fabric production. Other industries also produce dyes pollution at the end of their industrial processes²⁸. Nowadays, various dyes and additives are widely used in industries such as textile, paper, printing, paint, detergent, cosmetics, carpet, leather, rubber and food.

Dyes can be defined as oil or water-soluble organic compounds that produce colour. Natural dyes come from animals, plants, molluscs, minerals etc. Synthetic dyes are mostly unsaturated organic molecules. Wastewater containing these dyes cannot enter ecosystems due to its long-lasting colour, chemical stability and high biochemical oxygen demand⁵⁴. In India, the textile industry is the largest consumer of dyes. It is estimated that 260,000 tons of dyes are released into the environment each year¹⁶ and approximately 20% of water pollution worldwide is caused by dye industries⁴¹. Many countries have solid wastewater management policies and regulations with separate guidelines for each sector, with the aim of reducing the amount of pollution released into the environment.

Many industries have developed and have used different treatment strategies to treat wastewater including advanced technologies such as ion exchange, flocculation, adsorption, irradiation, coagulation, oxidation, photochemical ozonation, electrochemical destruction, advanced oxidation, membrane process, nanofiltration etc. from wastewater^{32,61}. In recent years, biological treatment has become the most effective technology compared to other methods. Microorganisms are primarily employed in biological treatment to break down pollutants in wastewater²⁵. These organisms transform pollutants through biochemical degradation enzymatic or metabolic processes. Many types of bacteria have been used successfully to bio absorb pollutants in wastewater.

Biosorption is a technology that effectively employs biomass to adsorb contaminants in wastewater when compared to other approaches^{3,4,19,48}. The utilization of

biochar-based adsorbents to remove contaminants from waste water resources has been the focus of recent environmental remediation research⁴³. The functionality of the biochar group, surface shape, pH, porosity, mineral content, specific surface area and adsorption capacity all affect the qualities of the biochar material. Biochar was created using a variety of raw materials and its ability to adsorb different metals was examined¹³.

The main purpose of this review is to search different theories in the field of biochar derived from biomass. Charcoal acts as a dye adsorbent in aqueous solution. In this review, the efficiency, adsorption properties of dyes and the effects of different studies on the adsorption performance of biochar obtained from biomass raw materials are discussed.

Preparation of biochar - Raw materials

Biomass can be defined as the organic material that is obtained at the end use of animal and plants origin. It is an important raw material in the preparation of biochar. In general, municipal waste can be divided into non lignocellulosic and lignocellulosic groups which includes animal and human waste and wood /wood products respectively. This biomass can be directly converted into bioenergy, chemicals and waste products through various thermal and chemical methods. This thermochemical process includes pyrolysis, gasification, hydrothermal carbonization, liquefaction etc. Pyrolysis is the most cost-effective way to produce biochar, bio-oil and syngas.

Selection of biomass: Different types of biomasses considered as agricultural wastes such as rice husk, coconut shell, walnut shell, seaweed, algae residues, peanut shells, etc. can be used to produce biochar. The composition and various factors such as cellulose, hemicellulose and lignin in the biochar preparation vary depending on the type of thermal degradation. Depending on the kind of feedstock material utilized, different components like cellulose, hemicellulose and lignin have different compositions and amounts in formed biochar¹³. During the pyrolysis process, these ingredients experience thermal deterioration or degradation at various temperatures.

The first step in the degradation process is the breakdown of hemicellulose at 200–260 °C, cellulose at 230–350 °C and lignin at 300–500 °C. To generate biochar, it is best to employ a combination of biomass feedstock from various sources, such as forestry waste, agricultural waste, field waste and manures, as each type of feedstock is not always available⁴⁶. The type of feedstock utilized to make the biochar and the adsorption processes employed determine the capacity of the biochar to be absorbed.

Development of biochar: Thermochemical conversion methods such as pyrolysis, hydrothermal carbonization (HTC) and gasification are the most commonly used conversion technologies for biochar synthesis. Pyrolysis is considered as the most efficient and economical technology for biochar production⁵⁸, providing the best biochar yield⁵⁶. In pyrolysis, biomass is converted into biochar by heating it at 200⁰-900⁰ C in an oxygen free atmosphere².

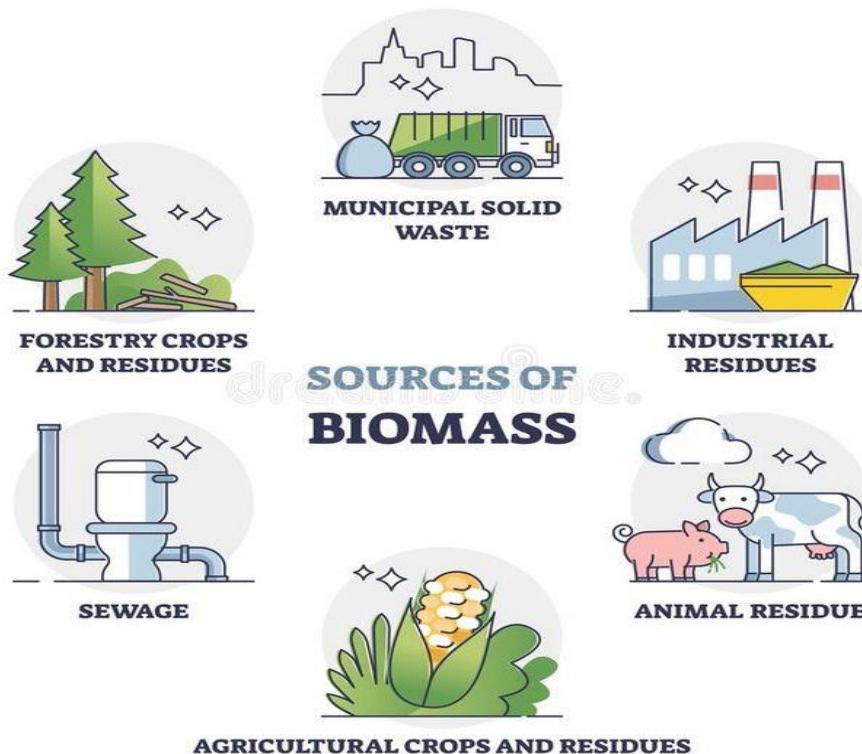


Fig. 1: Sources of Biomass

Fig. 2: Biochar production

The pyrolysis is divided into slow, medium and flash depending on parameters like temperature, residence time, heating etc. Hemicellulose, cellulose and lignin are organic compounds which are broken down during the thermal degradation process of biomass raw material components. As a result, there are variations in the amount of pyrolysis products. The properties of biosolids, bio-oil and biogas vary depending on temperature, heating rate and length of storage. Using heat and pressure in the presence of water, hydrothermal carbonization converts biomass to biochar. The reaction must be kept at a high temperature (1600–800 °C) and liquid state (>1 atm)^{49–52}. Depending on the kind of feedstock material utilized, different components like cellulose, hemicellulose and lignin have different compositions and amounts in formed biochar¹³.

During the pyrolysis process, these ingredients experience thermal deterioration or degradation at various temperatures. The first step in the degradation process is the breakdown of hemicellulose at 200–260 °C, cellulose at 230–350 °C and lignin at 300–500 °C. To generate biochar, it is best to employ a combination of biomass feedstock from various sources such as forestry waste, agricultural waste, field waste and manures, as each type of feedstock is not always available⁴⁶. The type of feedstock utilized to make the biochar and the adsorption processes employed determine the capacity of the biochar to be absorbed.

Bioremediation of dyes using bio char

Biological techniques have received great attention in recent years^{49–52}. In recent years, biosorption has been considered to be a fast, economical, environmentally friendly technology compared to traditional methods^{19,48}. Biosorption is the process of using inactive biological materials to reduce the concentration from aqueous solutions. Biosorbents used in dye removal processes are generally obtained from agricultural wastes, industrial wastes, fungi, bacteria, algae etc.^{49–52} The activity of biosorbents mainly depends on the nature of the biomass and the assay used during the biosorption process^{49–52}. Good

commercial biosorbents should have the following properties: high biosorption capacity⁵⁵, surface properties³⁹, efficient and effective separation of biosorbents⁶⁰, thermal stability⁵⁵, availability and preparation^{9,35}.

Nowadays, many studies on environmental remediation focus on biochar and biochar-based adsorbents⁴³. The use of biochar involves studying the surface properties and adsorption properties of these materials, as these properties are important in combating pollutants²⁶.

Factors affecting Bio-sorption of Dye in Biochar: The adsorption capacity of biochar depends on the biochar material as well as experimental parameters such as pH of the solution, amount of biochar, temperature, initial dye concentration, contact time etc.

Bio char characteristics: Due to different operating conditions, biochar using different conversion systems has different properties and activities. Pyrolysis temperature, reaction time, thermochemical conversion type and nature of raw materials significantly affect the properties of the resulting biochar and have an impact on the adsorption activity on different dyes.

Pore size is one of the most important features controlling the adsorption mechanism which may vary from nanometers to micrometers. Various studies have shown that larger pore size is obtained by pyrolysis at high temperature, resulting in larger surface area¹⁷. The pH of biochar also varies with the pyrolysis temperature and the type of feedstock. The pH of biochar increases at high pyrolysis temperature¹⁶ because higher pyrolysis temperature produces more ash and degrades acidic functional groups.

The surface characteristics of the biochar are significantly impacted by the pH of the solution. The elemental ratio of the biochar depends at different temperatures when different elements are present in the feed stock in different concentrations. The presence of different elements in

different proportions in the raw material also affects the properties of biochar viz. aromaticity, polarity etc.

In general, biochar produced at high temperature provides lower H/C and O/C ratios compared to low temperature biochar. The mineral content of biochar is affected by the type of feed stock and the pyrolysis temperature as well as other physical and chemical properties. The presence of minerals in biochar facilitates the precipitation and cation exchange of pollutants in the aqueous environment.

These contaminants are removed by π - π interactions, n- π interactions, electrophilic interactions, hydrophobic interactions and hydrogen bonding interactions. In short, the nature of the biomass feedstock and the pyrolysis temperature significantly affect the physiochemical properties of the synthesized biochar. Biochar obtained by high temperature pyrolysis has high surface area, high hydrophobicity, microporosity and high adsorption capacity for pollutants³¹. The nature of the biomass feedstock also affects the surface of biochar. For example, biochar obtained from wood biomass has a higher surface area than biochar obtained from waste and animal manure, even if both are obtained from the same process³¹. Therefore, taking care of these two parameters in biochar properties makes it suitable for the adsorption process.

Bio char dosage: Many studies have been conducted to study the effect of adsorbent during dye sequestration technology in order to study the effect of adsorbent required for maximum dye removal⁶. It has been found that the dye removal rate is rapid in the first few hours and then slows down as the biochar concentration increases⁸. The increase in colour removal as the number of adsorbent increases is due to the excess of adsorption sites on the biochar surface, while the colour molecules are more easily accessible with diminished dosage of biochar. The colour removal rate per unit weight of biochar is high.

Solution pH: The adsorption capabilities, surface chemistry and dye molecule accessibility for binding sites of biochar are all directly impacted by the pH of the solution⁴⁹⁻⁵². According to the previous studies, the optimum pH for decolourization is generally neutral or slightly alkaline. The percentage of colour removal is highest at optimum pH and tends to decrease in acidic or alkaline medium. The ability of hydrogen ions to compete with adsorbate ions for active sites on the adsorbent surface is closely related to the pH of the solution⁷. The impact of solution pH on the bio sorptive removal of methylene blue dye by biochar made from agricultural wastes was examined. The conclusion was reached by changing the solution's pH from 2 to 9 and it was observed that the dye removal efficiency of biochar increased from 40% to 90%. The biochar's sorption behaviour was attributed to its negative surface charge which promotes electrostatic interactions during the biosorption process.

Temperature: Temperature also has a significant impact that affects the adsorption capacity of biochar for removal of dye¹². In general, temperature has a positive effect on the adsorption capacity of biochar and is directly proportional to the reaction rate⁵³. With increase in temperature, the tendency of colour removal increases and after a certain limit, the adsorption does not increase. An increase in temperature increases the physio absorption, while lowering the temperature decreases the physio adsorption. This adsorbent is capable of adsorbing adsorbates at all temperatures with optimum removal at 350°C to 400°C³⁶. The change in temperature with varying adsorption capacity was referred to endothermic or exothermic processes¹⁸.

Initial dye concentration and contact time: The efficiency of the adsorption process of the adsorbent is greatly affected by the initial dye concentration. The initial increase in dye content provides a significant reason that will cause mass transfer between the aqueous and solid phases⁵, but also causes increase in collisions between the adsorbent and dye molecules. In contrast, the inadequate biomass concentration is not sufficient to absorb more of the color, resulting in reduced decolorization potential due to the accumulation effect of dye molecules. The initial dye concentration has limited effect on percent dye removal by adsorption due to unavailability of required number of active sites on the surface of bio char. Removal percentage becomes saturated at a particular dye concentration¹. Conclusively removal percent of dye molecules is high at lower dye concentration because the ratio between the dye molecule and surface sites is low.

Adsorption isotherms: Equilibrium data and concentration effects are two important factors in understanding adsorption processes. Adsorption uptake can be expressed as milligrams of dye adsorbed per gram of adsorbent and the mass adsorbed is determined by the amount of sorbate retained in the immobilized medium⁴⁰. The adsorption efficiency of single adsorbate was evaluated based on the adsorption isotherms obtained in the same medium. Adsorption isotherms are plotted between dye absorption and dye concentration. These were able to define sorption isotherm like one-single parameter model, seven-two model, five-three parameter model etc.

Langmuir²³ adsorption isotherm has been used to describe gas-solid adsorption in which physical force of attraction plays the key role for binding of dye molecules to the adsorbents. He assumed that all surface sites had equal attraction for the adsorbate. Further this assumption also described equilibrium relation between the liquid phase and solid phase analytically. In general, sorption sites are uniform, one sorbate molecule reacts with one active site with no interaction with sorbed species. In the process, more than one type of functional group contribute to the bio sorption process, each of which is having different affinity for sorbing dye molecule³⁷. The Langmuir model is frequently used for batch bio sorption and in most cases

successfully describes the equilibrium of dye bio sorption method.

The Freunlich isotherm was initially used empirically, but was later interpreted as adsorption on heterogeneous surfaces with different support surfaces³⁷. Stronger binding sites were occupied first with binding sites decreasing on increasing occupancy of the site. Features of the Langmuir and Freundlich models are integrated into a unified model for hybrid mechanism adsorption.

Adsorption Kinetics: Biosorption invariably involves rapid sorption reaction mechanism⁴⁹⁻⁵². Pseudo-first and second-order models were used to interpret the experimental data to examine the sorption mechanism and potential rate controlling steps like mass transport and processes of chemical reaction. The effect of contact time is a crucial factor to determine the adsorption kinetics. The kinetics behind adsorption forms the basis for determining the performance of a fixed bed or other flow-through systems³⁰. First-order rate equation was presented by Lagergren²² to explain the kinetics of adsorption of oxalic acid and malonic acid to charcoal from liquid to solid phase, believed to be the earliest model of adsorption rate based on adsorption capacity.

Lagergren's first-order rate equation has been called pseudo first-order model. The cation exchange capacity of peat is attributed to the bonding between metal ions and functional groups such as aldehydes, ketones, acids and phenolic explained by Ho and Mckay in their description of the kinetic adsorption process for divalent metal ions on peat. Ho's second-order rate was another name for the pseudo-second-order equation. This formula has been effectively

applied to the biosorption kinetics of a variety of dyes, including the sorption of Remazol colours by green seaweed-derived biochar and the removal of methylene blue from aqueous solution using coco-peat.

Adsorption Mechanism: The current application of biochar in the field of bioremediation has attracted research attention due to its simplicity, cost effectiveness, environmentally friendly and stable behaviour. It is necessary to understand biochar surface interactions and mechanism to ensure that specific properties of biochar are relevant to the biosorption of various pollutants. General mechanisms of biosorption of organic pollutants are interaction, pore diffusion, hydrophobic interaction, cationic and anionic interaction, coprecipitation, complexation etc. Biochar characteristics depends on the pyrolysis conditions. Biochar synthesized at high pyrolysis temperature is aromatic and acidic, less polar and has a large surface area. Hydrophobic adsorption is an adsorption method with loss of functional group containing hydrogen and oxygen.

Compared to this, biochar at low temperature exhibits adsorption of polar organic compounds through hydrogen bonding with various functional groups. Biochar made from agricultural crop residue is utilized to remove cationic dyes such as methyl violet, methylene blue, basic blue, rhodamine, crystal violet etc. the primary process involved is electrostatic adsorption¹⁵. The donor and retractor groups present in biochar generated at high temperatures interact with the two functions of dye molecules. In contrast, lower temperature-produced biochar has electron-retreating groups and π systems that operate as electron acceptors and interact with molecules that donate electrons.

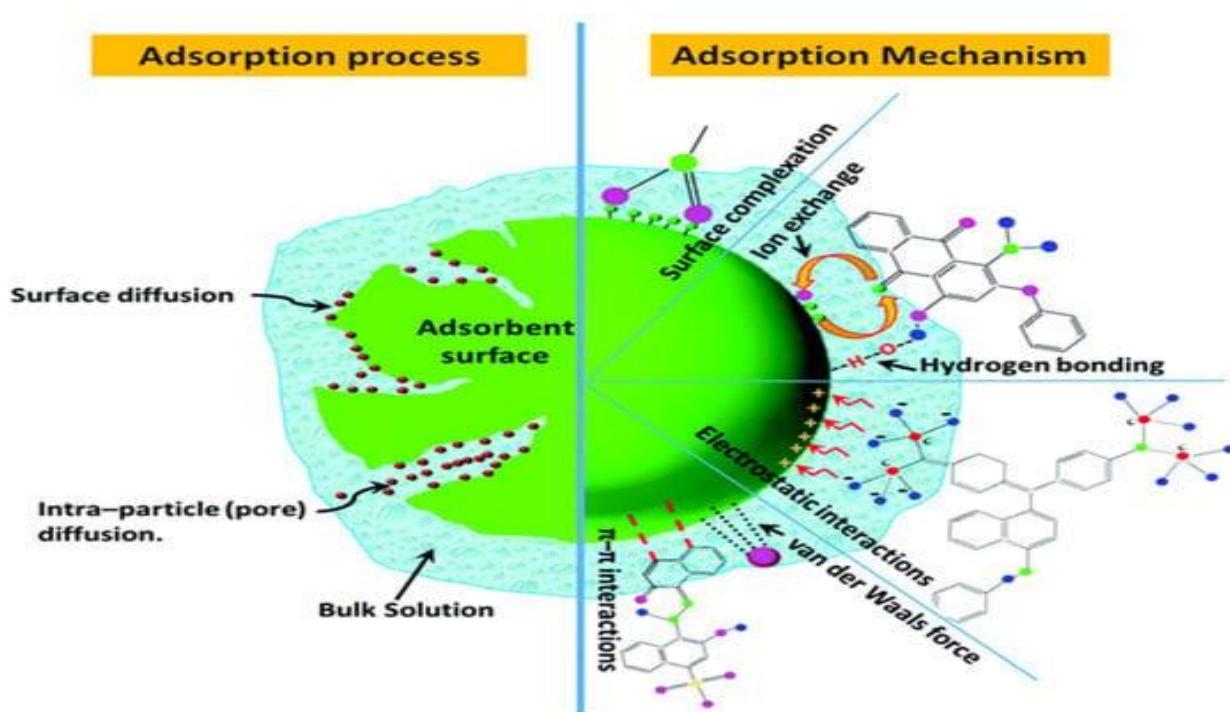


Fig. 3: Adsorption process and mechanism for dye removal from wastewater

Conclusion

This review focuses on recent advancements in the manufacture of biochar from different biomass materials and its possible use as a biosorbent for the biosorption of different colours. It offers extensive information on pyrolysis of different biomasses at different temperatures using various techniques to successfully remove dyes. The nature of the feed stock, residence period, heating rate, pyrolysis process and other factors have a significant impact on the properties and features of the resulting biochar.

Biochar's characterization tests showed that it can be employed as an effective adsorbent through conventional adsorption processes such as hydrogen bonding, electrostatic attraction, hydrophobic interactions, pore filling, π - π interaction and ion exchange. Because of its economical nature, ease of availability, ease of handling and adsorption capacity, bio char is a viable and innovative adsorbent.

References

1. Abbas F.S., Dyes removal from wastewater using agricultural waste, *Adv Environ Biol.*, **7(6)**, 1019–1026 (2013)
2. Ahmad M., Rajapaksha A.U., Lim J.E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S.S. and Ok Y.S., Bio char as a sorbent for contaminant management in soil and water: a review, *Chemosphere*, **99**, 19–33 (2014)
3. Bhagavathi Pushpa T., Jegan J. and Praveen S., Utilization of biomass in environs—a review, *Int J Adv Interdiscip Res.*, **3(7)**, 21–26 (2016a)
4. Bhagavathi Pushpa T., Vijayaraghavan J., Vijayaraghavan K. and Jegan J., Utilization of efective microorganisms-based water hyacinth compost as biosorbent for the removal of basic dyes, *Desalin Water Treat.*, **57(51)**, 24368–24377 (2016b)
5. Bustard M., McMullan G. and McHale A.P., Biosorption of textile dyes by biomass derived from *Kluveromyces marxianus* IMB3, *Bioprocess Eng.*, **19**, 427–430 (1998)
6. Chatteraj S. et al, Optimization of adsorption parameters for removal of carbaryl insecticide using neem bark dust by response surface methodology, *Water Conserv Sci Eng.*, **1**, 127–141, <https://doi.org/10.1007/s41101-016-0008-9> (2016)
7. Cliford R.L. and Noemi M.S., Biological and abiotic color reduction of paper mill efluents during anaerobic composting, *J Environ Eng.*, **136(7)**, 701–708 (2010)
8. Dawood S., Sen T.K. and Phan C., Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: kinetic, equilibrium, mechanism and thermodynamic, *Biores Technol.*, **246**, 76–81 (2017)
9. Du Z., Zheng T., Wang P., Hao L. and Wang Y., Fast microwaveassisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water, *Biores Technol.*, **201**, 41–49 (2016)
10. Farah J.Y. and El-Gendy N.S., Performance, kinetics and equilibrium in biosorption of anionic dye Acid Red 14 by the waste biomass of *Saccharomyces cerevisiae* as a low-cost biosorbent, *Turkish J Eng Environ Sci.*, **37**, 146–161 (2013)
11. Gimbert F., Morin-Crini N., Renault F., Badot P.M. and Crini G., Adsorption isotherm models for dye removal by cationized starchbased material in a single component system: error analysis, *J Hazard Mater.*, **157**, 34–46 (2008)
12. Iftekhar S., Ramasamy D.L., Srivastava V., Asif M.B. and Sillanpää M., Understanding the factors afeting the adsorption of Lanthanum using difrent adsorbents: a critical review, *Chemosphere*, <https://doi.org/10.1016/j.chemosphere.2018.04.053> (2018)
13. Inyang M.I., Gao B., Yao Y., Xue Y., Zimmerman A., Mosa A. and Cao X., A review of biochar as a low-cost adsorbent for aqueous heavy metal removal, *Crit Rev Environ Sci Technol.*, **46(4)**, 406–433 (2016)
14. Inyinbor Adejumoke A. et al, Water pollution: efects, prevention and climatic impact, In *Water Challenges of an Urbanizing World* (2018)
15. Jegan J., Praveen S., Bhagavathi Pushpa T. and Gokulan R., Sorption Kinetics and Isotherm studies of Cationic dyes by *Arachis hypogaea* shell derived biochar as Low-cost adsorbent, *Appl Ecol Environ Res.*, **18(1)**, 1925–1939 (2020a)
16. Jin X.C., Liu G.Q., Xu Z.H. and Tao W.Y., Decolorization of a dye industry efuent by *Aspergillus fumigatus* XC6, *Appl Microbiol Biotechnol.*, **74**, 239–243 (2007)
17. Joseph S.D., Downie A., Crosky A., Lehmann J. and Munroe P., Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility; a review of the materials science, *Rend Circ Mat Palermo Suppl.*, **48**, 101–106 (2007)
18. Karimi S., Tavakkoli Yaraki M. and Karri R.R., A comprehensive review of the adsorption mechanisms and factors infuencing the adsorption process from the perspective of bioethanol dehydration, *Renew Sustain Energy Rev.*, **107**, 535–553, <https://doi.org/10.1016/j.rser.2019.03.025> (2019)
19. Kucuker M.A., Wieczorek N., Kuchta K. and Copty N.K., Biosorption of neodymium on *Chlorella vulgaris* in aqueous solution obtained from hard disk drive magnets, *PLoS ONE*, **12(4)**, e0175255 (2017)
20. Kumar S., Loganathan V.A., Gupta R.B. and Barnett M.O., An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization, *J Environ Manag*, **92**, 2504–2512 (2011)
21. Kumar M. et al, Biodecolorization of reactive red 120 in batch and packed bed column using biochar derived from *Ulva reticulata*, *Biomass Convers Biorefinery*, <https://doi.org/10.1007/s13399-020-01268-x> (2021)
22. Lagergren S., About the theory of so-called adsorption of soluble substances, *Kungliga Svenska Vetenskapsakademiens Handlingar*, **24**, 1–39 (1898)

23. Langmuir I., Constitution and fundamental properties of solids and liquids, I, Solids, *J Am Chem Soc.*, **38**(11), 2221 (2019)

24. Malghani S., Gleixner G. and Trumbore S.E., Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon Biochar (2022) 4:10 1 3Page 15 of 16 10 sequestration potential and greenhouse gases emissions, *Soil Biol Biochem.*, **62**, 137–146 (2013)

25. McMullan G., Meehan C., Conneely A., Kirby N., Robinson T., Nigam P., Banat I.M., Marchant R. and Smyth W.F., Microbial decolourisation and degradation of textiles dyes, *Appl Microbiol Biotechnol*, **56**, 81–87 (2001)

26. Novak J.M., Biochar from Biomass and Waste, *Future Biochar Research Directions*, <https://doi.org/10.1016/B978-0-12-811729-3.00022-4> (2019)

27. Oliver D.P. et al, Sorption of pesticides by a mineral sand mining by-product, neutralised used acid (NUA), *Sci Total Environ.*, **442**, 255–262 (2013)

28. Pereira L. and Alves M., Dyes-Environmental Impact and Remediation, Environmental Protection Strategies for Sustainable Development, 111–162 (2012)

29. Priya A.K., Gokulan R., Vijaya Kumar A. and Praveen S., Biodecolorization of remazol dyes using biochar derived from *Ulva reticulata*: isotherm, kinetics, desorption and thermodynamic studies, *Desalination Water Treat.*, **200**, 286–295 (2020)

30. Qiu Y., Zheng Z., Zhou Z. and Sheng G.D., Efectiveness and mechanisms of dye adsorption on a straw-based biochar, *Bioresour Technol*, **100**, 5348–5351 (2009)

31. Rajapaksha A.U. et al, Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification, *Chemosphere*, **148**, 276–291 (2016)

32. Robinson T., McMullan G., Marchant R. and Nigam P., Remediation of dyes in textile efuent: a critical review on current treatment technologies with a proposed alternative, *Biores Technol*, **77**, 247–255 (2001)

33. Sadhasivam S., Savitha S. and Swaminathan K., Exploitation of *Trichoderma maharzianum* mycelial waste for the removal of Rhodamine 6G from aqueous solution, *J Environ Manage*, **85**, 155–161 (2007)

34. Sakthishabarish K., Karthika T., Sandhya S.N., Yazhini A. and Kannabiran Krishnan, Bacterial bioremediation of textile effluent dyes contaminated sites, *Res. J. Biotech.*, **18**(10), 127–138 (2023)

35. Saha G.C., Hoque M.I.U., Miah M.A.M., Holze R., Chowdhury D.A., Khandaker S. and Chowdhury S., Biosorptive removal of lead from aqueous solutions onto Taro (*Colocasiaesculenta* (L.) Schott) as a low cost bioadsorbent: characterization, equilibria, kinetics and biosorption-mechanism studies, *J Environ Chem Eng.*, **5**(3), 2151–2162 (2017)

36. Sathishkumar M., Binupriya A., Vijayaraghavan K. and Yun S., Two and three-parameter isothermal modeling for liquid-phase sorption of Procion Blue H-B by inactive mycelial biomass of *Penicillium fulvum*, *J Chem Technol Biotechnol*, **82**, 389–398 (2007)

37. Schiewer S. and Volesky B., Modelling of proton-metal ion exchange in biosorption, *Environ Sci Technol*, **29**(12), 3049–3058 (1995)

38. Schwarzenbach R.P. et al, Global water pollution and human health, *Annu Rev Environ Resour.*, <https://doi.org/10.1146/annurev-environ-100809-125342> (2010)

39. Shi L., Wei D., Ngo H.H., Guo W., Du B. and Wei Q., Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): fluorescence and response surface methodology, *Biores Technol*, **194**, 297–304 (2015)

40. Shooto N.D., Dikio C.W., Wankasi D., Sikhwivhilu L.M., Mtunzi F.M. and Dikio E.D., Novel PVA/MOF nanofibres: fabrication, evaluation and adsorption of lead ions from aqueous solution, *Nanosc Res Lett*, **11**(1), 414 (2016)

41. Streith J., Regiotorirhena, Chemical and pharmaceutical industries and the Mulhouse Chemistry School, *C R Chim.*, **21**(2), 131–151 (2018)

42. Sun K. et al, Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars, *Bioresour Technol*, **118**, 120–127 (2012)

43. Tareq R., Akter N. and Azam M.S., Biochars and Biochar Composites, low-cost adsorbents for environmental remediation, *Biochar from Biomass and Waste*, 169–209 (2019)

44. Thillainayagam B.P. et al, Continuous sorption of methylene blue dye from aqueous solution using efective microorganisms-based water hyacinth waste compost in a packed column, *Biomass Convers Biorefinery*, <https://doi.org/10.1007/s13399-020-01208-9> (2021)

45. Thompson K.A., Shimabuku K.K., Kearns J.P., Knappe D.R.U., Summers R.S. and Cook S.M., Environmental comparison of biochar and activated carbon for tertiary wastewater treatment, *Environ Sci Technol*, **50**, 11253–11262 (2016)

46. Tong X.J., Li J.Y., Yuan J.H. and Xu R.K., Adsorption of Cu (II) by biochars generated from three crop straws, *Chem Eng J.*, **172**, 828–834 (2011)

47. Valarmathi R., Natarajan D. and Kanagarasan M., Antioxidant, anticancer activity and phytochemical constituents of *Dryopteris hirtipes* (blumze) kuntze Linn., *Res. J. Biotech.*, **19**(2), 38–39 (2024)

48. Varshini J.S.C. and Das N., Relevant approach to assess the performance of biowaste materials for the recovery of Lanthanum (III) from aqueous medium, *Res J Pharm, Biol Chem Sci.*, **5**(6), 88–94 (2014)

49. Vijayaraghavan K., Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications, *Environ Technol Rev*, **8**(1), 47–64 (2019)

50. Vijayaraghavan K. and Ashokkumar T., Characterization and evaluation of reactive dye adsorption onto Biochar Derived from *Turbinaria conoides* Biomass, *Environ Prog Sustain Energy*, <https://doi.org/10.1002/ep.13143> (2019)

51. Vijayaraghavan K. and Yun Y.S., Bacterial biosorbents and biosorption, *Biotechnol Adv.*, **26**(3), 266–291 (2008a)

52. Vijayaraghavan K. and Yun Y.S., Biosorption of C.I. Reactive black 5 from aqueous solution using acid treated biomass of brown seaweed *Laminaria*, *Dyes Pigm*, **76**(3), 726–732 (2008b)

53. Wahab R. et al, Photocatalytic TMO-NMs adsorbent: temperature-time dependent Safranine degradation, sorption study validated under optimized efective equilibrium models parameter with standardized statistical analysis, *Sci Rep*, **7**, 42509 (2017)

54. Wang X., Gu X., Lin D., Dong F. and Wan X., Treatment of acid rose dye containing wastewater by ozonizing-biological aerated flter, *Dyes Pigm*, **74**(3), 736–740 (2007)

55. Wang B., Zhu Y., Bai Z., Luque R. and Xuan J., Functionalized chitosan biosorbents with ultra-high performance, mechanical strength and tunable selectivity for heavy metals in wastewater treatment, *Chem Eng J*, **325**, 350–359 (2017)

56. Wang Y. et al, Comparative evaluation of hydrothermal carbonization and low temperature pyrolysis of eucommia ulmoides oliver for the production of solid biofuel, *Sci Rep*, **9**, 5535 (2019)

57. Wang X., Guo Z., Hu Z. and Zhang J., Recent advances in biochar application for water and wastewater treatment: a review, *Peer J*, **8**, e9164 (2020)

58. Waqas M., Asam Z., Rehan M., Anwar M.N., Khattak R.A., Ismail I.M.I., Tabatabaei M. and Nizami A.S., Development of biomass derived biochar for agronomic and environmental remediation applications, *Biomass Convers Bio refinery*, **11**(3), 1–23 (2021)

59. Xiao X., Chen B., Chen Z., Zhu L. and Schnoor J.L., Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review, *Environ Sci Technol*, **52**(9), 5027–5047 (2018)

60. Xin S., Zeng Z., Zhou X., Luo W., Shi X., Wang Q. and Du Y., Recyclable *Saccharomyces cerevisiae* loaded nanofbrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal, *J Hazard Mater*, **324**, 365–372 (2017)

61. Yagub M.T., Sen T.K., Afrose S. and Ang H.M., Dye and its removal from aqueous solution by adsorption: a review, *Adv Coll Interface Sci.*, **209**, 172–184 (2014).

(Received 20th September 2024, accepted 28th October 2024)